Turbine Unit Model with IAPWS Property Package
Contents
###############################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2023 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
###############################################################################
Turbine Unit Model with IAPWS Property Package#
Author: Anuja Deshpande
Maintainer: Brandon Paul
Updated: 2023-06-01
Learning Outcomes#
Demonstrate use of the turbine unit model in IDAES
Demonstrate different simulation options available
Problem Statement#
In this example, we will expand steam in a turbine using the turbine unit model and the IAPWS property package for water/steam. It is assumed that the turbine operates at steady state.
The inlet specifications are as follows:
Flow Rate = 100 mol/s
Mole fraction (H2O) = 1
Pressure = 150000 Pa
Temperature = 390 K
We will simulate 2 different cases, depending on the operating specifications by the user:
Case 1: In this case, we will specify the turbine isentropic efficiency and the pressure decrease variable.
Pressure Decrease = 25000 Pa
Isentropic Efficiency = 0.9
Case 2: In this case, we will specify the turbine isentropic efficiency and the pressure ratio variable.
Pressure Ratio = 0.90131
Isentropic Efficiency = 0.9
IDAES documentation reference for turbine model:https://idaes-pse.readthedocs.io/en/stable/
Setting up the problem in IDAES#
In the following cell, we will be importing the necessary components from Pyomo and IDAES.
# Import objects from pyomo package
from pyomo.environ import ConcreteModel, SolverFactory, value, units
# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model
from idaes.core import FlowsheetBlock
# Import idaes logger to set output levels
import idaes.logger as idaeslog
# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.
m = ConcreteModel()
m.fs = FlowsheetBlock(
dynamic=False
) # dynamic or ss flowsheet needs to be specified here
# Import the IAPWS property package to create a properties block for the flowsheet
from idaes.models.properties import iapws95
from idaes.models.properties.helmholtz.helmholtz import PhaseType
# Add properties parameter block to the flowsheet with specifications
m.fs.properties = iapws95.Iapws95ParameterBlock()
Case 1: Fix pressure change and turbine efficiency#
Add Turbine Unit#
# Import turbine unit model from the model library
from idaes.models.unit_models.pressure_changer import Turbine
# Create an instance of the turbine unit, attaching it to the flowsheet
# Specify that the property package to be used with the turbine is the one we created earlier.
m.fs.turbine_case_1 = Turbine(property_package=m.fs.properties)
# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package
# DOF = Number of Model Variables - Number of Model Constraints
from idaes.core.util.model_statistics import degrees_of_freedom
# Call the degrees_of_freedom function, get intitial DOF
DOF_initial = degrees_of_freedom(m)
print("The initial DOF is {0}".format(DOF_initial))
The initial DOF is 5
Fix Inlet Stream Conditions#
# Fix the stream inlet conditions
m.fs.turbine_case_1.inlet.flow_mol[0].fix(
100
) # converting to mol/s as unit basis is mol/s
# Use htpx method to obtain the molar enthalpy of inlet stream at the given temperature and pressure conditions
m.fs.turbine_case_1.inlet.enth_mol[0].fix(
value(iapws95.htpx(T=390 * units.K, P=150000 * units.Pa))
)
m.fs.turbine_case_1.inlet.pressure[0].fix(150000)
Fix Pressure Change and Turbine Efficiency#
# Fix turbine conditions
m.fs.turbine_case_1.deltaP.fix(-10000)
m.fs.turbine_case_1.efficiency_isentropic.fix(0.9)
# Call the degrees_of_freedom function, get final DOF
DOF_final = degrees_of_freedom(m)
print("The final DOF is {0}".format(DOF_final))
The final DOF is 0
Initialization#
# Initialize the flowsheet, and set the logger level to INFO
m.fs.turbine_case_1.initialize(outlvl=idaeslog.INFO)
2023-11-02 10:24:37 [INFO] idaes.init.fs.turbine_case_1: Initialization Complete: optimal - Optimal Solution Found
Solve Model#
# Solve the simulation using ipopt
# Note: If the degrees of freedom = 0, we have a square problem
opt = SolverFactory("ipopt")
solve_status = opt.solve(m, tee=True)
Ipopt 3.13.2:
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
This version of Ipopt was compiled from source code available at
https://github.com/IDAES/Ipopt as part of the Institute for the Design of
Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE
Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.
This version of Ipopt was compiled using HSL, a collection of Fortran codes
for large-scale scientific computation. All technical papers, sales and
publicity material resulting from use of the HSL codes within IPOPT must
contain the following acknowledgement:
HSL, a collection of Fortran codes for large-scale scientific
computation. See http://www.hsl.rl.ac.uk.
******************************************************************************
This is Ipopt version 3.13.2, running with linear solver ma27.
Number of nonzeros in equality constraint Jacobian...: 18
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 8
Total number of variables............................: 9
variables with only lower bounds: 0
variables with lower and upper bounds: 4
variables with only upper bounds: 0
Total number of equality constraints.................: 9
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 0.0000000e+00 2.36e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 0.0000000e+00 2.84e-14 1.05e-08 -1.0 9.07e-03 - 9.90e-01 1.00e+00h 1
Number of Iterations....: 1
(scaled) (unscaled)
Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00
Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14
Number of objective function evaluations = 2
Number of objective gradient evaluations = 2
Number of equality constraint evaluations = 2
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 2
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 1
Total CPU secs in IPOPT (w/o function evaluations) = 0.008
Total CPU secs in NLP function evaluations = 0.002
EXIT: Optimal Solution Found.
from pyomo.opt import TerminationCondition, SolverStatus
# Check if termination condition is optimal
assert solve_status.solver.termination_condition == TerminationCondition.optimal
assert solve_status.solver.status == SolverStatus.ok
View Results#
# Display Outlet pressure
m.fs.turbine_case_1.outlet.pressure.display()
_pressure_outlet_ref : Size=1, Index=fs._time, ReferenceTo=fs.turbine_case_1.control_volume.properties_out[...].component('pressure')
Key : Lower : Value : Upper : Fixed : Stale : Domain
0.0 : 1.0000000000000002e-06 : 140000.0 : 1100000000.0 : False : False : PositiveReals
# Display a readable report
m.fs.turbine_case_1.report()
====================================================================================
Unit : fs.turbine_case_1 Time: 0.0
------------------------------------------------------------------------------------
Unit Performance
Variables:
Key : Value : Units : Fixed : Bounds
Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)
Mechanical Work : -19597. : watt : False : (None, None)
Pressure Change : -10000. : pascal : True : (None, None)
Pressure Ratio : 0.93333 : dimensionless : False : (None, None)
------------------------------------------------------------------------------------
Stream Table
Units Inlet Outlet
Molar Flow mole / second 100.00 100.00
Mass Flow kilogram / second 1.8015 1.8015
T kelvin 390.00 384.28
P pascal 1.5000e+05 1.4000e+05
Vapor Fraction dimensionless 1.0000 1.0000
Molar Enthalpy joule / mole 48727. 48531.
====================================================================================
Case 2: Fix Pressure Ratio and Turbine Efficiency#
Add Turbine Unit#
# Create an instance of another turbine unit, attaching it to the flowsheet
# Specify that the property package to be used with the turbine is the one we created earlier.
m.fs.turbine_case_2 = Turbine(property_package=m.fs.properties)
# Call the degrees_of_freedom function, get intitial DOF
DOF_initial = degrees_of_freedom(m.fs.turbine_case_2)
print("The initial DOF is {0}".format(DOF_initial))
The initial DOF is 5
Fix Inlet Stream Conditions#
# Fix the stream inlet conditions
m.fs.turbine_case_2.inlet.flow_mol[0].fix(
100
) # converting to mol/s as unit basis is mol/s
# Use htpx method to obtain the molar enthalpy of inlet stream at the given temperature and pressure conditions
m.fs.turbine_case_2.inlet.enth_mol[0].fix(
value(iapws95.htpx(T=390 * units.K, P=150000 * units.Pa))
)
m.fs.turbine_case_2.inlet.pressure[0].fix(150000)
Fix Pressure Ratio & Turbine Efficiency#
# Fix turbine pressure ratio
m.fs.turbine_case_2.ratioP.fix(14 / 15)
# Fix turbine efficiency
m.fs.turbine_case_2.efficiency_isentropic.fix(0.9)
# Call the degrees_of_freedom function, get final DOF
DOF_final = degrees_of_freedom(m.fs.turbine_case_2)
print("The final DOF is {0}".format(DOF_final))
The final DOF is 0
Initialization#
# Initialize the flowsheet, and set the output at INFO
m.fs.turbine_case_2.initialize(outlvl=idaeslog.INFO)
2023-11-02 10:24:38 [INFO] idaes.init.fs.turbine_case_2: Initialization Complete: optimal - Optimal Solution Found
Solve Model#
# Solve the simulation using ipopt
# Note: If the degrees of freedom = 0, we have a square problem
opt = SolverFactory("ipopt")
solve_status = opt.solve(m.fs.turbine_case_2, tee=True)
Ipopt 3.13.2:
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
This version of Ipopt was compiled from source code available at
https://github.com/IDAES/Ipopt as part of the Institute for the Design of
Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE
Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.
This version of Ipopt was compiled using HSL, a collection of Fortran codes
for large-scale scientific computation. All technical papers, sales and
publicity material resulting from use of the HSL codes within IPOPT must
contain the following acknowledgement:
HSL, a collection of Fortran codes for large-scale scientific
computation. See http://www.hsl.rl.ac.uk.
******************************************************************************
This is Ipopt version 3.13.2, running with linear solver ma27.
Number of nonzeros in equality constraint Jacobian...: 18
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 8
Total number of variables............................: 9
variables with only lower bounds: 0
variables with lower and upper bounds: 4
variables with only upper bounds: 0
Total number of equality constraints.................: 9
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 0.0000000e+00 2.36e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 0.0000000e+00 2.84e-14 1.05e-08 -1.0 9.07e-03 - 9.90e-01 1.00e+00h 1
Number of Iterations....: 1
(scaled) (unscaled)
Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00
Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00
Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14
Number of objective function evaluations = 2
Number of objective gradient evaluations = 2
Number of equality constraint evaluations = 2
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 2
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 1
Total CPU secs in IPOPT (w/o function evaluations) = 0.009
Total CPU secs in NLP function evaluations = 0.001
EXIT: Optimal Solution Found.
View Results#
# Display turbine pressure decrease
m.fs.turbine_case_2.outlet.pressure[0].display()
pressure : Pressure
Size=1, Index=None, Units=Pa
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : 1.0000000000000002e-06 : 140000.0 : 1100000000.0 : False : False : PositiveReals
# Display a readable report
m.fs.turbine_case_2.report()
====================================================================================
Unit : fs.turbine_case_2 Time: 0.0
------------------------------------------------------------------------------------
Unit Performance
Variables:
Key : Value : Units : Fixed : Bounds
Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)
Mechanical Work : -19597. : watt : False : (None, None)
Pressure Change : -10000. : pascal : False : (None, None)
Pressure Ratio : 0.93333 : dimensionless : True : (None, None)
------------------------------------------------------------------------------------
Stream Table
Units Inlet Outlet
Molar Flow mole / second 100.00 100.00
Mass Flow kilogram / second 1.8015 1.8015
T kelvin 390.00 384.28
P pascal 1.5000e+05 1.4000e+05
Vapor Fraction dimensionless 1.0000 1.0000
Molar Enthalpy joule / mole 48727. 48531.
====================================================================================