Hide code cell content
###############################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2023 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved.  Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
###############################################################################

Parameter Estimation Using the NRTL State Block#

Author: Jaffer Ghouse
Maintainer: Andrew Lee
Updated: 2023-06-01

In this module, we use Pyomo’s parmest tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (alpha_ij) and the binary interaction parameter (tau_ij), where i and j are the pure component species. In this example, we only estimate the binary interaction parameter (tau_ij) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block.

We will complete the following tasks:

  • Set up a method to return an initialized model

  • Set up the parameter estimation problem using parmest

  • Analyze the results

  • Demonstrate advanced features using parmest

Setting up an initialized model#

We need to provide a method that returns an initialized model to the parmest tool in Pyomo.

Inline Exercise: Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model.
def NRTL_model(data):

    # Todo: Create a ConcreteModel object
    m = ConcreteModel()

    # Todo: Create FlowsheetBlock object
    m.fs = FlowsheetBlock(dynamic=False)

    # Todo: Create a properties parameter object with the following options:
    # "valid_phase": ('Liq', 'Vap')
    # "activity_coeff_model": 'NRTL'
    m.fs.properties = BTXParameterBlock(
        valid_phase=("Liq", "Vap"), activity_coeff_model="NRTL"
    )
    m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)

    # Fix the state variables on the state block
    # hint: state variables exist on the state block i.e. on m.fs.state_block

    m.fs.state_block.flow_mol.fix(1)
    m.fs.state_block.temperature.fix(368)
    m.fs.state_block.pressure.fix(101325)
    m.fs.state_block.mole_frac_comp["benzene"].fix(0.5)
    m.fs.state_block.mole_frac_comp["toluene"].fix(0.5)

    # Fix NRTL specific parameters.

    # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)
    m.fs.properties.alpha["benzene", "benzene"].fix(0)
    m.fs.properties.alpha["benzene", "toluene"].fix(0.3)
    m.fs.properties.alpha["toluene", "toluene"].fix(0)
    m.fs.properties.alpha["toluene", "benzene"].fix(0.3)

    # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)
    m.fs.properties.tau["benzene", "benzene"].fix(0)
    m.fs.properties.tau["benzene", "toluene"].fix(-0.9)
    m.fs.properties.tau["toluene", "toluene"].fix(0)
    m.fs.properties.tau["toluene", "benzene"].fix(1.4)

    # Initialize the flash unit
    m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)

    # Fix at actual temperature
    m.fs.state_block.temperature.fix(float(data["temperature"]))

    # Set bounds on variables to be estimated
    m.fs.properties.tau["benzene", "toluene"].setlb(-5)
    m.fs.properties.tau["benzene", "toluene"].setub(5)

    m.fs.properties.tau["toluene", "benzene"].setlb(-5)
    m.fs.properties.tau["toluene", "benzene"].setub(5)

    # Return initialized flash model
    return m

Parameter estimation using parmest#

In addition to providing a method to return an initialized model, the parmest tool needs the following:

  • List of variable names to be estimated

  • Dataset

  • Expression to compute the sum of squared errors

In this example, we only estimate the binary interaction parameter (tau_ij). Given that this variable is usually indexed as tau_ij = Var(component_list, component_list), there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:

  • fs.properties.tau[‘benzene’, ‘toluene’]

  • fs.properties.tau[‘toluene’, ‘benzene’]

Inline Exercise: Create a list called `variable_name` with the above-mentioned variables declared as strings.
# Todo: Create a list of vars to estimate
variable_name = [
    "fs.properties.tau['benzene', 'toluene']",
    "fs.properties.tau['toluene', 'benzene']",
]

Pyomo’s parmest tool supports the following data formats:

  • pandas dataframe

  • list of dictionaries

  • list of json file names.

Please see the documentation for more details.

For this example, we load data from the csv file BT_NRTL_dataset.csv. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature.

# Load data from csv
data = pd.read_csv("BT_NRTL_dataset.csv")

# Display the dataset
display(data)
temperature liq_benzene vap_benzene
0 365.500000 0.480953 0.692110
1 365.617647 0.462444 0.667699
2 365.735294 0.477984 0.692441
3 365.852941 0.440547 0.640336
4 365.970588 0.427421 0.623328
5 366.088235 0.442725 0.647796
6 366.205882 0.434374 0.637691
7 366.323529 0.444642 0.654933
8 366.441176 0.427132 0.631229
9 366.558824 0.446301 0.661743
10 366.676471 0.438004 0.651591
11 366.794118 0.425320 0.634814
12 366.911765 0.439435 0.658047
13 367.029412 0.435655 0.654539
14 367.147059 0.401350 0.604987
15 367.264706 0.397862 0.601703
16 367.382353 0.415821 0.630930
17 367.500000 0.420667 0.640380
18 367.617647 0.391683 0.598214
19 367.735294 0.404903 0.620432
20 367.852941 0.409563 0.629626
21 367.970588 0.389488 0.600722
22 368.000000 0.396789 0.612483
23 368.088235 0.398162 0.616106
24 368.205882 0.362340 0.562505
25 368.323529 0.386958 0.602680
26 368.441176 0.363643 0.568210
27 368.558824 0.368118 0.577072
28 368.676471 0.384098 0.604078
29 368.794118 0.353605 0.557925
30 368.911765 0.346474 0.548445
31 369.029412 0.350741 0.556996
32 369.147059 0.362347 0.577286
33 369.264706 0.362578 0.579519
34 369.382353 0.340765 0.546411
35 369.500000 0.337462 0.542857
36 369.617647 0.355729 0.574083
37 369.735294 0.348679 0.564513
38 369.852941 0.338187 0.549284
39 369.970588 0.324360 0.528514
40 370.088235 0.310753 0.507964
41 370.205882 0.311037 0.510055
42 370.323529 0.311263 0.512055
43 370.441176 0.308081 0.508437
44 370.558824 0.308224 0.510293
45 370.676471 0.318148 0.528399
46 370.794118 0.308334 0.513728
47 370.911765 0.317937 0.531410
48 371.029412 0.289149 0.484824
49 371.147059 0.298637 0.502318

We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data.

Inline Exercise: Complete the following cell by adding an expression to compute the sum of square errors.
# Create method to return an expression that computes the sum of squared error
def SSE(m, data):
    # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid
    # and vapor phase. For example, the squared error for the vapor phase is:
    # (float(data["vap_benzene"]) - m.fs.state_block.mole_frac_phase_comp["Vap", "benzene"])**2
    expr = (
        float(data["vap_benzene"])
        - m.fs.state_block.mole_frac_phase_comp["Vap", "benzene"]
    ) ** 2 + (
        float(data["liq_benzene"])
        - m.fs.state_block.mole_frac_phase_comp["Liq", "benzene"]
    ) ** 2
    return expr * 1e4
Note: Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT.

We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called pest. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. tee=True will print the solver output after solving the parameter estimation problem.

import logging

idaeslog.getIdaesLogger("core.property_meta").setLevel(logging.ERROR)
# Initialize a parameter estimation object
pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)

# Run parameter estimation using all data
obj_value, parameters = pest.theta_est()
C:\Users\dkgun\AppData\Local\Temp\ipykernel_11124\1110609025.py:44: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead
  m.fs.state_block.temperature.fix(float(data["temperature"]))
C:\Users\dkgun\AppData\Local\Temp\ipykernel_11124\426137296.py:7: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead
  float(data["vap_benzene"])
C:\Users\dkgun\AppData\Local\Temp\ipykernel_11124\426137296.py:10: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead
  float(data["liq_benzene"])
Ipopt 3.13.2: 

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt

This version of Ipopt was compiled from source code available at
    https://github.com/IDAES/Ipopt as part of the Institute for the Design of
    Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE
    Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.

This version of Ipopt was compiled using HSL, a collection of Fortran codes
    for large-scale scientific computation.  All technical papers, sales and
    publicity material resulting from use of the HSL codes within IPOPT must
    contain the following acknowledgement:
        HSL, a collection of Fortran codes for large-scale scientific
        computation. See http://www.hsl.rl.ac.uk.
******************************************************************************

This is Ipopt version 3.13.2, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...:     3746
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:     2200

Total number of variables............................:     1100
                     variables with only lower bounds:        0
                variables with lower and upper bounds:      300
                     variables with only upper bounds:        0
Total number of equality constraints.................:     1098
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  6.0671019e+01 3.15e+00 4.84e+01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  5.2961050e+00 1.76e+03 5.05e+00  -1.0 1.37e+04    -  9.74e-01 1.00e+00f  1
   2  5.2586169e+00 4.01e+02 1.09e+00  -1.0 5.15e+02    -  1.00e+00 1.00e+00h  1
   3  5.1450958e+00 7.04e+01 2.27e-01  -1.0 4.11e+01    -  1.00e+00 1.00e+00h  1
   4  5.0748980e+00 1.25e+02 2.08e-01  -1.7 5.74e+02    -  1.00e+00 1.00e+00h  1
   5  5.0775194e+00 7.87e+00 1.92e-01  -1.7 8.44e+01    -  1.00e+00 1.00e+00h  1
   6  5.0726692e+00 1.37e+01 1.90e-01  -2.5 1.38e+02    -  1.00e+00 1.00e+00h  1
   7  5.0750377e+00 2.85e+00 2.60e-02  -2.5 6.99e+01    -  1.00e+00 1.00e+00h  1
   8  5.0749670e+00 7.36e-02 2.81e-03  -3.8 9.72e+00    -  1.00e+00 1.00e+00h  1
   9  5.0749687e+00 4.51e-04 4.80e-06  -3.8 1.01e+00    -  1.00e+00 1.00e+00h  1
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  10  5.0749686e+00 2.91e-04 1.36e-06  -5.7 5.81e-01    -  1.00e+00 1.00e+00h  1
  11  5.0749686e+00 4.78e-08 2.18e-10  -8.6 7.65e-03    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 11

                                   (scaled)                 (unscaled)
Objective...............:   5.0749685783046434e+00    5.0749685783046434e+00
Dual infeasibility......:   2.1827409324437497e-10    2.1827409324437497e-10
Constraint violation....:   1.6625508263665860e-10    4.7832145355641842e-08
Complementarity.........:   2.5076274461651402e-09    2.5076274461651402e-09
Overall NLP error.......:   2.5076274461651402e-09    4.7832145355641842e-08


Number of objective function evaluations             = 12
Number of objective gradient evaluations             = 12
Number of equality constraint evaluations            = 12
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 12
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 11
Total CPU secs in IPOPT (w/o function evaluations)   =      0.002
Total CPU secs in NLP function evaluations           =      0.010

EXIT: Optimal Solution Found.


You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell.

print("The SSE at the optimal solution is %0.6f" % (obj_value * 1e-4))
print()
print("The values for the parameters are as follows:")
for k, v in parameters.items():
    print(k, "=", v)
The SSE at the optimal solution is 0.000507

The values for the parameters are as follows:
fs.properties.tau[benzene,toluene] = -0.8987624036283798
fs.properties.tau[toluene,benzene] = 1.4104861099366137

Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures.

Advanced options for parmest: bootstrapping#

Pyomo’s parmest tool allows for bootstrapping where the parameter estimation is repeated over n samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details.

For the example above, the bootstrapping can be run by uncommenting the code in the following cell:

# Run parameter estimation using bootstrap resample of the data (10 samples),
# plot results along with confidence regions

# Uncomment the following code:
# bootstrap_theta = pest.theta_est_bootstrap(4)
# display(bootstrap_theta)